公告


赛特达开博了,非常高兴这样的季节能够和大家一起分享这样的喜悦。赛特达在获得大家新老朋友的支持的同时也希望能够一起分享最前沿的技术信息。希望各位能够常来坐坐,也常来聊聊!crack

关于我

<2020年5月>
262728293012
3456789
10111213141516
17181920212223
24252627282930
31123456

最近来访

文章分类

文章档案

相册


最新评论

请问,如果想让DOE中的试验方案在一台机器中实现分布计算,也就是四个核心,每个核心处理一个方案,该怎么做?--【匿名用户】:E-works热心网友 spred
不错!!--卢玉琴
那么请问isight&nbsp;fd能不能进行类似的mdol语言开发呢?有没有相关资料?--【匿名用户】:E-works热心网友
能否较详细介绍一下开发的一个简单实例啊。--【匿名用户】:E-works热心网友
为什么语言介绍并不更新啊?--【匿名用户】:E-works热心网友
博主您好,我初次接触这种抽样法,感觉一头雾水。很幸运看到您的博文,请您能详细介绍一下拉丁超立方抽样好吗?最好举例说明。谢谢!--【匿名用户】:E-works热心网友
我用的是isight8.0可以实现并行计算吗--【匿名用户】:E-works热心网友
太经典了!对于我这样刚刚迈出校园的学生来说,真是醍醐灌顶啊!多谢楼主的教导之言!--【匿名用户】:E-works热心网友
很好的资料
请问你有包含图片的完整文档吗?
可否发一份networm_2005@163.com
谢谢--【匿名用户】:E-works热心网友
logs中写的错误类型是stderr:&nbsp;Estimated&nbsp;disk=1.2MB
stderr:&nbsp;Estimated&nbsp;DOF=80
stderr:&nbsp;Estimated&nbsp;memory=32MB
之类的错误,不知道是什么原因

--【匿名用户】:E-works热心网友
请问一下,做过isight集成nastran的案例吗,我用的是isight-fd版本,集成nastran2007,结果总是出错,不知道什么原因,烦请高手指点一下--【匿名用户】:E-works热心网友
好的&nbsp;谢谢--【匿名用户】:E-works热心网友
说得是没错,但那些政府管员,当管的都拿老百姓的呀,大家一起努力吧,改变中国现在的样子吧,--【匿名用户】:E-works热心网友
好!--【匿名用户】:E-works热心网友
清华大学有N多个大学校长,俺想知道这五句话是哪个校长说的?&nbsp;
--【匿名用户】:E-works热心网友
谢谢答疑解惑
--【匿名用户】:E-works热心网友
--【匿名用户】:E-works热心网友
请问Isight&nbsp;for&nbsp;Abaqus——by&nbsp;hannah在abaqus的哪个版本中有啊?--【匿名用户】:E-works热心网友
Re&nbsp;2楼:
如果想让DOE中的各个实验方案分到不同的机器上并行计算的话,单机版的Isight-FD是不行的,必须在FIPER并行分布环境中才能实现。在这个FIPER环境中,Isight-FD只是它的一个客户端,另外还有一个客户端叫Station,这样一旦Isight-FD把各个方案提交到FIPER环境中后,FIPER环境的服务器端ASCS就会自动的把任务分到各个机器的Station上来并行或分布执行。--赛特达
Isight&nbsp;for&nbsp;Abaqus是我们的另外一个产品,优化方面功能和Isight-FD基本是一样的,只不过这个产品只能集成Abaqus,不能集成其它的软件。

--赛特达

阅读排行榜

评论排行榜

遗传算法的现状

  进入90年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。尤其是遗传算法的应用研究显得格外活跃,不但它的应用领域扩大,而且利用遗传算法进行优化和规则学习的能力也显著提高,同时产业应用方面的研究也在摸索之中。此外一些新的理论和方法在应用研究中亦得到了迅速的发展,这些无疑均给遗传算法增添了新的活力。遗传算法的应用研究已从初期的组合优化求解扩展到了许多更新、更工程化的应用方面。
  随着应用领域的扩展,遗传算法的研究出现了几个引人注目的新动向:一是基于遗传算法的机器学习,这一新的研究课题把遗传算法从历来离散的搜索空间的优化搜索算法扩展到具有独特的规则生成功能的崭新的机器学习算法。这一新的学习机制对于解决人工智能中知识获取和知识优化精炼的瓶颈难题带来了希望。二是遗传算法正日益和神经网络、模糊推理以及混沌理论等其它智能计算方法相互渗透和结合,这对开拓21世纪中新的智能计算技术将具有重要的意义。三是并行处理的遗传算法的研究十分活跃。这一研究不仅对遗传算法本身的发展,而且对于新一代智能计算机体系结构的研究都是十分重要的。四是遗传算法和另一个称为人工生命的崭新研究领域正不断渗透。所谓人工生命即是用计算机模拟自然界丰富多彩的生命现象,其中生物的自适应、进化和免疫等现象是人工生命的重要研究对象,而遗传算法在这方面将会发挥一定的作用,五是遗传算法和进化规划(Evolution Programming,EP)以及进化策略(Evolution Strategy,ES)等进化计算理论日益结合。EP和ES几乎是和遗传算法同时独立发展起来的,同遗传算法一样,它们也是模拟自然界生物进化机制的智能计算方法,即同遗传算法具有相同之处,也有各自的特点。目前,这三者之间的比较研究和彼此结合的探讨正形成热点。
  1991年D.Whitey在他的论文中提出了基于领域交叉的交叉算子(Adjacency based crossover),这个算子是特别针对用序号表示基因的个体的交叉,并将其应用到了TSP问题中,通过实验对其进行了验证。
  D.H.Ackley等提出了随即迭代遗传爬山法(Stochastic Iterated Genetic Hill-climbing,SIGH)采用了一种复杂的概率选举机制,此机制中由m个“投票者”来共同决定新个体的值(m表示群体的大小)。实验结果表明,SIGH与单点交叉、均匀交叉的神经遗传算法相比,所测试的六个函数中有四个表现出更好的性能,而且总体来讲,SIGH比现存的许多算法在求解速度方面更有竞争力。
  H.Bersini和G.Seront将遗传算法与单一方法(simplex method)结合起来,形成了一种叫单一操作的多亲交叉算子(simplex crossover),该算子在根据两个母体以及一个额外的个体产生新个体,事实上他的交叉结果与对三个个体用选举交叉产生的结果一致。同时,文献还将三者交叉算子与点交叉、均匀交叉做了比较,结果表明,三者交叉算子比其余两个有更好的性能。
  国内也有不少的专家和学者对遗传算法的交叉算子进行改进。2002年,戴晓明等应用多种群遗传并行进化的思想,对不同种群基于不同的遗传策略,如变异概率,不同的变异算子等来搜索变量空间,并利用种群间迁移算子来进行遗传信息交流,以解决经典遗传算法的收敛到局部最优值问题
  2004年,赵宏立等针对简单遗传算法在较大规模组合优化问题上搜索效率不高的现象,提出了一种用基因块编码的并行遗传算法(Building-block Coded Parallel GA,BCPGA)。该方法以粗粒度并行遗传算法为基本框架,在染色体群体中识别出可能的基因块,然后用基因块作为新的基因单位对染色体重新编码,产生长度较短的染色体,在用重新编码的染色体群体作为下一轮以相同方式演化的初始群体。
  2005年,江雷等针对并行遗传算法求解TSP问题,探讨了使用弹性策略来维持群体的多样性,使得算法跨过局部收敛的障碍,向全局最优解方向进化。
发表于: 2009-04-07 16:42 赛特达 阅读(1211) 评论(0) 收藏 好文推荐

本博客所有内容,若无特殊声明,皆为博主原创作品,未经博主授权,任何人不得复制、转载、摘编等任何方式进行使用和传播。

作者该类其他博文:

发表评论(网友发言只代表个人观点,不代表本网站观点或立场。)

您尚未登录,请先【登录或注册